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ABSTRACT
Upregulation of miR-34a by p53 is recently believed to be a key mediator in the pro-apoptotic effects of this tumor suppressor. We sought to

determine whether restoration of miR-34a levels in p53 deficient cells could rescue the response to DNA damage. Compared with the p53

wildtype U2OS cells, miR-34a expression was much lower in p53 deficient Saos2 cells upon cisplatin treatment. Unexpectedly, delivery of

miR-34a in Saos2 cells does not increase the cell sensitivity to apoptosis. This effect was mediated by direct downregulation of SirT1

expression bymiR-34a, which in turn increased the NFkB activity. Inhibition of NFkB activity in Saos2 cells by Aspirin sensitized the miR-34a

overexpressing cells to cell death. Thus, in tumors with p53 deficiency, miR-34a restoration alone confers drug resistance through Sirt1-NFkB

pathway and combination of miR-34a and NFkB inhibitor could be considered as a promising therapeutic strategy. J. Cell. Biochem. 113:

2903–2908, 2012. � 2012 Wiley Periodicals, Inc.
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C ancer has emerged as the key reason for death, which is due to

genomic mutations that produce oncogenes with dominant

gain of function and tumor suppressor genes with recessive loss of

function [Hanahan and Weinberg, 2000]. The p53 protein is a

transcription regulator that is frequently altered by mutation in

multiple cancers, including osteosarcoma, colon cancer, and lung

cancer [Fearon and Vogelstein, 1990; Berman et al., 2008]. Lots of

the downstream effectors of p53 have been identified, and the
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different sets of genes induced by p53 determine the switch between

a pro-survival and a pro-apoptotic fate [Wee et al., 2009].

Restoration of the pro-apoptotic downstream molecules is thought

to be promising in cancer therapy in p53 deficient cells.

MicroRNAs (miRNAs) are a class of noncoding, single-stranded

small RNAs (approximately 22 nucleotides) that modulate the

expression of a network of mRNAs through binding the imperfectly

complementary sequence in the target. In other words, a single,

aberrantly expressed miRNA might target multiple gene networks

that are essential for cancer development. Reconstitution of tumor-

suppressive miRNA, or sequence-specific knockdown of oncogenic

miRNAs by ‘‘antagomirs’’ has produced favorable antitumor

outcomes in experimental models [Tong and Nemunaitis, 2008].

Recently, miR34a has been shown to be one of the keymediators and

downstream factors of p53 [Chang et al., 2007; Raver-Shapira et al.,

2007]. It is reported that miR-34a induces cell cycle arrest and

apoptosis by down-regulating cell cycle and apoptosis related

proteins such as NMYC, CDK6, Cyclin D1, Cyclin E2, E2F, and SIRT1

[Tazawa et al., 2007; Fujita et al., 2008; Sun et al., 2008; Wei et al.,

2008; Yamakuchi et al., 2008]. Although miR-34a plays a tumor

suppressor role in multiple cells, its tumor suppressor role is context

dependent. It is found that the tumor suppressor role is dependent on

an intact p53 pathway [Merkel et al., 2010]. In another study,

miR34a has even been found to act as an oncogene in myc

overexpression cells through direct repressing myc expression

[Sotillo et al., 2011]. Some of the miRNA targets functions

bidirectionally in a context dependent manner. Take SIRT1 (Silent

mating type information regulation 2 homolog 1) for an example,

which is an NAD-dependent histone/protein deacetylase, is

implicated in diverse cellular processes including apoptosis [Michan

and Sinclair, 2007]. The anti-apoptotic activity of SIRT1 is

implicated in tumorigenesis, since SIRT1 expression is elevated in

a variety of cancer cell lines and tumors [Saunders and Verdin,

2007]. SIRT1 deacetylates pro-apoptotic proteins such as p53 and

promotes cell survival under genotoxic and oxidative stresses.

However, SIRT1 was also reported to deacetylateNFkB at certain

lysine sites and inhibit its activity [Yeung et al., 2004; Chen et al.,

2005; Yang et al., 2007; Rajendrasozhan et al., 2008]. Nuclear

factor-kappa B (NFkB) controls the expression of gene products that

affect important cellular processes, such as adhesion, cell cycle,

angiogenesis, and apoptosis [Karin and Lin, 2002]. Acetylation of

RelA/p65 is a dynamic process where the acetylation status of

specific lysine residues affects both the DNA-binding ability and

transcriptional activity of the protein [Chen et al., 2002; Kiernan

et al., 2003].

In view of the above data, it is interesting to test whether

restoration of miR-34a in p53 deficient cells could rescue the p53

deficiency. In this study, we found that miR-34a expression was

significantly repressed in p53 deficient Saos2 cells. Unexpectedly,

restoration of miR-34a in Saos2 cells did not decrease the cell

survival rate. Molecularly, miR-34a increased the NFkB activity

through down-regulation of SIRT1. Abrogation of NFkB activity by

Aspirin greatly increased the cell death in miR-34a expressed Saos2

cells. In conclusion, our study demonstrates a strong synthetic role

of combining miR-34a and Aspirin in inducing p53 deficient cells to

death.

MATERIALS AND METHODS

ANTIBODY AND REAGENTS

Anti-caspase-3 was obtained from Sigma and anti-a-tubulin, anti-

Bcl2, anti-sirt1 were from Santa Cruz. The protease inhibitor

Cocktail was obtained from Calbiochem and Aspirin was obtained

from Sigma. Penicillin/streptomycin, trypsin/EDTA, and PBS were

obtained fromGibco. Synthetic miR34amimics and the control were

synthesized in Genepharm in Shanghai and dissolved in DEPC-

treated H2O at a concentration of 20 nM as a stock. Cisplatin and

nicotinamide were bought from Sigma. All other reagents were

purchased from domestic companies.

CELL CULTURE

Osteosarcoma cell lines U2OS and Saos2, obtained from ATCC, were

cultured in 1640 medium (Invitrogen), supplemented with 2mM

glutamine, 0.06 g/L penicillin, 0.1 g/L streptomycin, and 10% fetal

bovine serum (FBS) (Sijiqing, Hangzhou, China) at 378C in a

humidified atmosphere of 5% CO2.

REPORTER ASSAY

Cells were plated into 24-well plates at a density of 70% confluence

(unless otherwise indicated). Twenty-four hours later, cells were

transiently transfected with Lipofectamine 2000 (Invitrogen)

according to the manufacturer’s directions, with the designated

combination of miRNA mimics or the control, 0.2mg 3� kB firefly

luciferase reporter plasmid, and 0.1mg pRL-TK (Promega) for

transfection normalization. Twenty-four hours after transfection,

cells were lysed using passive lysis buffer and analyzed for firefly

and Renilla luciferase activities using the dual-luciferase reagent

assay kit (Promega) according to the manufacturer’s instructions.

WESTERN BLOT ANALYSIS

Cell culture monolayers were washed twice with ice-cold PBS and

lysed with nuclear protein extraction kit or whole cell lysis buffer.

Protein concentration was determined by the BCA protein assay

(Pierce Chemical Co., Rockford, IL). Equal amounts of cell lysates

were separated on SDS–polyacrylamide gels and transferred onto

nitrocellulose membranes. Membranes were then incubated in

blocking solution (5% nonfat-milk in 20mM Tris-HCl, 150mM

NaCl, 0.1% Tween-20) (TBS-T), followed by incubation with the

indicated antibodies at 48C overnight. The membranes were then

washed in TBS-T and incubated with HRPO-conjugated secondary

antibodies for 1 h at room temperature. Antibody detection was

performed with an enhanced chemiluminescence reaction.

RT-PCR

Cells with indicated treatments were harvested for isolation of RNA

using Trizol reagent (Invitrogen) according to manufacturer’s

instructions. First-strand cDNA synthesis was performed using

random primers catalyzed by murine leukemia virus (M-MLV)

reverse transcriptase for mRNA detection. For miRNA detection,

miRNAs were reversely transcribed using miScript Reverse

Transcription Kit (Qiagen). RNA abundance was detected by

qPCR. Real-time PCR was performed using AB 7500 system. The

conditions were 10ml of SYBR Green I (Takara), 0.5mM ofeach 50
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and 30 primer, and 2ml of sample and H2O to a final volume of 20ml.

Samples were amplified for 45 cycles with a denaturation at 958C for

5 s, annealing and extension at 608C for 34 s. SYBR green

fluorescence was measured to determine the amount of double-

stranded DNA. To discriminate specific from nonspecific cDNA

products, a melting curve was obtained at the end of each run.

Relative mRNA levels were normalized to GAPDH levels and

compared with the control using the 2�DDCt. Relative miR-34a levels

were normalized to U6B levels. Primers for the tested genes were

listed in Table I.

MTT

To assess cell proliferation, the MTT test was employed. Briefly, cells

with different treatments were seeded at a density of 2,000 cells/well

in 96-well plates. 3-(4, 5-methylthiazol-2-yl)-2, 5-diphenyl-

tetrazolium bromide (MTT) was added (100mg/well) for 4 h at

different time points. Formazan products were solubilized with

DMSO, and the optical density was measured at 490 nm. All

experiments were performed in triplicate.

STATISTICS

All the experiments are done at least in triplicates and the data are

expressed as means� SD. Student’s t-test or ANOVA is applied for

statistics analysis. P< 0.05 is considered as significantly different.

RESULTS

LOWER EXPRESSION OF miR-34a IN p53 NULL SAOS2 CELLS

Previously, miR-34a expression was found to be closely related to

p53 status [Park et al., 2008]. In this regard, we first analyzed miR-

34a expression in p53 wildtype U2OS and p53 deficient Saos2 cells.

As expected, miR-34a expression was much lower in Saos2 cells at

basal condition (Fig. 1A). Three micrograms per milliliter

cisplatintreatment significantly increased the expression of miR-

34a in U2OS cells, while the induction of miR-34a was largely

compromised in Saos2 cells (Fig. 1A). Next we decided to see

whether restoration of miR-34a in Saos2 cells would rescue the

insensitivity to apoptosis. Consistent with previous study, miR-34a

expression increased U2OS cell death both at basal and cisplatin

treatment (Fig. 1B). However, miR-34a expression in Saos2 cells

reduced the cell apoptosis induced by cisplatin (Fig. 1C), which was

consistent with the total cell number increase as seen from MTT

assay (Fig. 1D).

INCREASED NFkB ACTIVITY IN miR-34a RESTORED SAOS2 CELLS

Previously, miR-34a was also supposed to play a pro-apoptotic role

by targeting some targets, such as Sirt1 [Audrito et al., 2011], Bcl2

[Wang et al., 2009]. We thus tested the expression of Sirt1 and Bcl2

in miR-34a restored Saos2 and U2OS cells. In U2OS cells, delivery of

miR-34a decreased Sirt1 and Bcl2 expression both at mRNA and

protein level (Fig. 2A,C). In contrast, in Saos2 cells, forced

expression of miR34a repressed the expression of SIRT1 at both

mRNA level and protein level, while an increase rather than the

expected decrease of Bcl2 expression was observed (Fig. 2B,C).

Sirt1 was found to deacetylate multiple targets in addition to p53,

of which NFkB is another key factor [Rajendrasozhan et al., 2008].

Next, we observed the effects of miR34a on the transcriptional

activity of NFkB by reporter assay. miR-34a overexpression

enhanced the NFkB reporter luciferase activity in the Saos2 cells

(2.9-fold increase) (Fig. 2D). Nicotinamide, a well-known inhibitor

of Sirt1 [Rahman and Islam, 2011], significantly reduced the NFkB

activity (Fig. 2D), suggesting that miR-34a increasedNFkB activity

in a SIRT1 dependent way. In contrast, miR-34a only mildly

increased the NFkB activity in U2OS cells (Fig. 2E), perhaps due to

the substrate completion by p53.

COMBINATION OF miR-34a RESTORATION AND INHIBITION OF

NFkB RESCUES THE SENSITIVITY TO CELL DEATH IN SAOS2 CELLS

We have previously shown that NFkB can transcriptionally activate

Bcl2 expression [Tan et al., 2009]. It is thus highly possible that

increased NFkB might be responsible for the observed increase of

Bcl2 (Fig. 2B,C), rather than the supposed miR-34a mediated

downregulation Bcl2 expression. In other words, increased NFkB

might be a key factor for the pro-survival role of miR-34a in p53

deficient cells.

From the above data, we decide to test whether combination of

miR-34a and NFkB inhibitor in Saos2 cells could sensitize the cell to

apoptosis. As seen from the cleaved caspase-3, Aspirin alone ormiR-

34a alone did not lead to cell apoptosis in Saos2 cells, while

combination of miR-34a expression and Aspirin significantly

increased the apoptosis, as seen from the increased expression of

cleaved caspase-3 (Fig. 3A).

MTT assay also showed that combination of Aspirin and miR-34a

significantly decreased survival cell number (Fig. 3B), suggesting a

synthetic lethality of miR-34a restoration and NFkB inhibition in

p53 deficient cells.

DISCUSSION

In this study, we have found that miR-34a expression is much lower

in Saos2 cells both in the basal condition and under cisplatin

treatment. Restoration of miR-34a alone in Saos2 cells does not

rescue the apoptotic response to cisplatin, which is due to increased

activation of NFkB. Combination of miR34a with inhibition of NFkB

activity by Aspirin leads to significant cell death.

TABLE I. Sequences of the Primer Used or the miRNA Mimics

Name Sequence

SIRT1 Forward ACCAGAACAGTTTCATAGAGC
Reverse TCTGAGGCACTTCATGGGTA

Bcl2 Forward GAGGATTGTGGCCTTCTTTGA
Reverse CCGTACAGTTCCACAAAGGCA

GAPDH Forward GACCTGACCTGCCGTCTA
Reverse AGGAGTGGGTGTCGCTGT

miR-34a Forward TGGCAGTGTCTTAGCTGGTTG
miR-34a mimics Sense UGGCAGUGUCUUAGCUGGUUGU

Antisense AACCAGCUAAGACACUGCCAUU
NC Sense UUCUCCGAACGUGUCACGUTT

Antisense ACGUGACACGUUCGGAGAATT
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Consistent with transcriptional activation of miR-34a expression

by p53, we observed lower miR-34a expression in p53 null Saos2

cancer cells. Although restoration of miR-34a repressed the

expression of SIRT1, which is consistent with previous studies

[Zhao et al., 2010], we did not observe the restored pro-apoptotic

role as in p53 wildtype cells [Yamakuchi and Lowenstein, 2009],

suggesting that p53 play an essential role in the tumor suppressive

function of miR-34a. Besides p53, miR-34a-Sirt1 also targets many

other genes, such as p65, which adds another layer of the complexity

of miR-34a function. We here found that in the p53 deficient cells,

miR-34a-Sirt1-NFkB pathway overwhelms the miR-34a-Sirt1-p53

pathway. Up to now, the detailed mechanism why miR-34a

specifically increases NFkB activity in p53 deficient cells is still

largely unknown, which is worth further studying. It is highly

possible that in the absence of p53, there is enough Sirt1 available

for p65 deacetylation, and thus decreased Sirt1 mainly released the

suppressed NFkB.

Due to the increased NFkB activity, we did not observe a decrease

of Bcl2 expression in miR-34a overexpressed Saos2 cells, as

observed in other models [Wang et al., 2009]. All these suggest that

the tumor suppressor role of miR-34a function is cell context

dependent.

It is important to note that Bcl2 is just one of the factors for the

pro-survival role of miR-34a-Sirt1-NFkB pathway in the p53

deficient cells. Besides Bcl2 [Tan et al., 2009], NFkB has been

identified to increase some other pro-survival and repress anti-

apoptotic genes coordinately, such as cyclinD1, COX2, and IGF-1

[Garrouste et al., 2002]. CyclinD1 is another reported target of miR-

34a [Sun et al., 2008], and thus it is highly possible that increased

NFkB activity would overwhelm the miR-34a-cyclinD1 regulation.

Chronic inflammation with constitutive activation of NFkB is one

of the important characteristics of cancer [Mantovani et al., 2008],

including those with p53 mutant. To this end, miR-34a-Sirt1-NFkB

regulatory pathway activation, which might overwhelm the tumor

suppressor role of miR-34a, might be also true in other cancer

models. In this regard, combination of miR-34a and NFkB inhibition

should be promising in some p53 deficient cancers.

In summary, restoration of miR-34a alone in p53 deficient Saos2

cells unexpectedly showed a mild prosurvival role, which is due to

the increased NFkB activity. Combination of miR-34a restoration

Fig. 1. Lower expression of miR-34a in p53 null Saos2 cells. A: Expression of miR-34a in U2OS and Saos2 cells under vehicle or 3mg/ml cisplatin treatment was analyzed by

miRNA specific qRT-PCR. B: U2OS cells treated with negative control miRNAs (NC) or miR-34a mimics were subjected to vehicle or cisplatin therapy. Cell apoptosis was analyzed

by cleaved caspase-3 assay. Data presented here are a representative of three different experiments. Relative expression level of the cleaved caspase-3 was quantified by Image J

and indicated above each lane. C: Saos2 cells treated with negative control miRNAs (NC) or miR-34a mimics were subjected to vehicle or cisplatin therapy. Cell apoptosis was

analyzed by cleaved caspase-3 assay. Data presented here were a representative of three different experiments. Quantification was done similar as (B). D: Saos2 cells were

treated same as the above and cell number was quantified by MTT assay. [Color figure can be seen in the online version of this article, available at http://wileyonlinelibrary.com/

journal/jcb]
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and NFkB inhibition holds as a promising therapeutic strategy in

p53 deficient cancers.
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